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MINIMUM AV, TWO-IMPULSE COPLANAR TRANSFER ONTO A HYPERBOLIC
ESCAPE TRAJECTORY FROM A MARTIAN PARKING ORBIT

By William C. Bean and Ivan L. Johnson, Jr.
SUMMARY AND INTRODUCTION

This report presents the results of a study to determine a minimum
AV, two-impulse transfer trajectory from a 50-n. mi. circular parking
orbit above the planet Mars onto a coplarar escape hyperbola that has
been arbitrarily oriented and has an eccentricity of T7.4657L006 and a
semilatus rectum of 5.02191087 e.r. This study was conducted utilizing
the accelerated gradient method program (ref. 1) which in most cases was
modified to simultaneocusly determine both (1) a best insertion point
onto the hyperbolic escape trajectory and (2) the minimum AV two-impulse
transfer onto the hyperbolic escape trajectory at this point. This
modification assumes that there are given fixed initial position and
velocity vectors in the orbital plane of the target conic.

SYMBOLS
a semimajor axis of target hyperbola, e.r.
e eccentricity of target hyperbola, n.d.
F performance index, e.r./hr
F! F o+ ATg
g terminal constraints
h scalar angular momentum of target

hyperbola, (e.r.)%/nr

jo] semilatus rectum of target hyperbola, e.r.
T (x2 + y2)1/2 ) e.r.

+ 4+
Xy ¥o U , v components of state vector after terminal

impuse, e.r., e.r., e.r./hr, e.r./hr



X, Y preassigned rectangular coordinate axes
o control vector

* . aF!
o value of control vector for Whlch-gg—

vector vanishes

B change in generalized eccentric anomaly,
(e.r.)l/2
FAuO-
AVO = | av initial velocity impulse vector, e.r./hr
L O - T T -
(Auf'
AVf = Av final velocity impulse vector, e.r./hr
[ 1] |
ef polar angle measured positively from peri-
apsis in the direction of motion, specifying
the insertion point, deg
) true anomaly angle for first impulse man-
© euver, deg
Al
A=t vector of constant Lagrange multipliers
A3
T
A transpose of A
u Mars gravitational constant, 2.146659
(e.r.)3/nr?
¢ inclination of periapsis of target hyperbola

relative to +X axis, deg
METHOD

In each computer run generated in the study a transfer trajectory
was obtained by determining control vector o¥* which minimizes the
performance index

Fla) = |AVO| + |AVf|



subject to the terminal constraints

g1 r+ ex cos & + ey sin ¢ - D 0
- _|.* . by he sin ¢ -
g = g2 = u + or + ) 0
v+ hx _ he cos ¢ . 0
€3 pr P

derived in the appendix. The control vector o is defined by

—~ - —~ —‘
al Auf
“2 Avf
o = a3 - Auo
ah Avo
o B
p)
R T

where (Auo, Avo) and (Auf, Avf) are the rectangular components of AV

and AVf, respectively, and B 1is the corresponding change in "generalized

eccentric anomaly" (ref. 2),i.e., the independent variable associated
with universal two-body equations and partial derivatives.

The target hyperbola is oriented such that ¢ = 0°(i.e., periapsis is
on the positive X-axis), e = T.465TL006, and p = 5.02191087 e.r. Further,

by h = YV up and u = 2.146659 (e.r.)3/hr2, h = 3.2833%4 (e.r.)?/hr. The
corresponding periapsis altitude and velocity on the target hyperbola
were 0.59320L00 e.r. and 5.5349278 e.r./hr. The characteristic scalar
velocity on the 50-n. mi. circular parking orbit of radius 0.5Lk96L918 e.r.
prior to the transfer maneuver was 1.9762357 e.r./hr.

Verification of a relative minimum for ¥ was obtained by comparing
to zero the values found for the components of g and 3F'/3a, where

F' = F + Alg.
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Thus,
- —
r.BF' )
Ja 0
1
1
=t
%
t 1
¢ 3
1
oF 0
304)4
1]
oF 0
a

is a necessary condition for a minimum of F subject to the constraints
g = 0.

In certain exceptional cases convergence could not be obtained because
of numerical difficulties arising when the optimization program was
tending to select an insertion point well beyond the hyperbolic peri-
apsis. Here the problem was replaced by an approximately equivalent
problem of minimizing the performance index F subject to terminal
constraints characterizing a specified state vector either 10 or 15 hours
of coasting flight time beyond the hyperbolic periapsis; i.e., subject
to

(6] [x+5.8557611 e.xr. | [O]

1
& y - 48.386L552 e.r. 0
g = = =
&3 ut + 0.6490673 e.r./hr 0
+
g v - L4.80257TL40 e.r./hr 0
UYL i

for the 10-hour case, or to

-
e [x + 8.9919301 e.r. (0]
g, v - T1.5908990 e.r. 0

u' + 0.6L87062 e.r./hr

+
._gl*_J L_v - 4.7996360 e.r./m;
for the 15-hour case.




The study consisted of a sequence of runs assuming an impulse-
coast-impulse type maneuver and using the accelerated gradient method
program. For each case initial position and velocity components on the
Mars circular parking orbit were input to the program. First guesses
for o were made to start the program coverging to find o¥. The
first impulse, AVO, for the transfer was made at true anomaly eo on

the parking orbit, and the second impulse, AVf, at the polar angle,
ef, whiph is the point of insertion onto the hyperbolic trajectory.
Two typical cases are shown in the feollowing figure.

Mars parking orbit

Trajectory (1), indicated by the dashed line, illustrates a particular
case; namely, 6, = -180°, for which the insertion point onto the hyper-

bola is optimized by the program. Here the program selects ef = 0°,

i.e., a Hohmann transfer. The incremental velocity impulses, (AVO)l
and (AVf)l,
by the dashed arrows. Trajectory (2), indicated by the solid line, il-

lustrates a particular case for which the insertion point is prespecified,

for this elliptical transfer trajectory are illustrated



namely 60 = -0.,5°, ef = 96.9004°, The incremental velocity impulses
(AVO)2 and (AVf)2 for this hyperbolic transfer trajectory are illustrated

by the solid arrows.
RESULTS

The results are given in the table, which gives polar angle ef

for insertion, performance index F, and control vector o* for each
case. The maneuver resulting in the lowest performance index obtained
was given by run no. 1k, a two-impulse transfer initiated at the point
on the circular parking orbit coincident with the line of symmetry of
the target hyperbola and terminated at a fixed point lying 15 hours of
flight time beyond the periapsis. Here, the control vector selected
is given by

[0.00360 e.r./hr
0.00469 e.r./nr
a* = 10.04912 e.r./hr

3.6056 e.r./hr

1.6399 (e.r.)l/?J
-

and the corresponding minimum performance index was found to be
F(o*) = 3.6118429 e.r./hr. The constraints for run no. 1k were well
satisfied, thus '

—

[-0.178 x 10714 e.r.
+0.284 x 10714 e.r.
€= 140.555 x 10716 e.r./hr
+0.144 x 10715 e.r./hr|

X

X

Also, the necessary condition for a minimum of F subject to the

constraints g = 0, namely 3F'/da = 0, was well satisfied, for there
was found

[-0.579 x 10713 ]
-0.505 x 10713
= = 0.349 x 10712
0.168 x 10”11
| -0.429 x 10711 |

X

X

X




CONCLUDING REMARKS

It should be noted that for several runs attempted permitting a
variable initial coast (as well as two-impulses) numerical difficulties
were encountered. This might be interpreted as due to the relative
lack of dependence of the optimum performance index on the position in
the parking orbit at which the transfer is initiated. This lack of
dependence may be regarded as due to the relative proximity of the hyper-
bolic periapsis to the parking orbit; it is known that for circular
cotangency with hyperbolic periapsis the optimum two-impulse transfer
degenerates to a one-impulse maneuver and hence is totally independent
of 60. A further run which failed to attain complete convergence in-

dicated that the absolute optimum two-impulse transfer might be the
lower bound 6_ = -0.533°, 8, = 97.700°, end F % 3.28. This indicates

that the point of insertion approaches infinity on the hyperbolic
asymptote as the second impulse tends to vanish. This result is sup-
ported by the analysis in reference 3.
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APPENDIX
DERIVATION OF TERMINAL CONSTRAINTS CHARACTERIZING A GIVEN CONIC

The three constraints which require that the terminal state vector
characterize a conic with specified semi-latus rectum (p), eccentri-
city (e), and inclination (¢) are herein derived. First, the terminal
position coordinates must satisfy the polar equation for a conic,

_ P
TS T+ e cos (8 - 9) (1)

By appropriate use of the transformation equations x = r cos 6,

Yy = r sin 6 and the identity cos (6 - ¢) = cos 6 cos ¢ + sin 6 sin ¢, it
is seen that the terminal rectangular position coordinates x, y must
satisfy g = 0, where

g =T +excos ¢ +eysing -p (2)

where r 1is given by r = x2 + yz.

Next, the terminal velocity components in rectangular coordinates
are determined. By differentiation of (2) there follows

r = ex cos ¢ - e& sin ¢ (3)

But by differentiation of r =\Jx2 + y2 there follows

rr = Xi + y& (4)
By (3) and (L4) there is obtained

(x + re cos ¢)x + (y + re sin ¢)y = O (5)

This result is compared to an altered version of the equation obtained
by differentiation of (1), i.e.,

s = _pe sin (6 ~ )6 (6)
[1+ecos (6~ ¢)]2
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Equation (6) is first altered in form by use of equation (1). Then the
Kepler equation

§ =B (7)
re
where h =4up and u 1is the gravitational constant, is substituted
into (6), yielding
£=§£ sin (6 - ¢) (8)

Finally, equation (8) is altered by use of equation (L), the identity
sin (6 - ¢) = sin 6 cos ¢ - cos 9 sin ¢, and the transformation equations
X =rcos 8, y=r sin 6 to yield

% + y§ = yehpcos ¢ _ xehp51n [

(9)

By simultaneous solution of (5) and (9) it is found that the ter-

minal rectangular velocity components i, § must be related to the ter-
minal rectangular position coordinates x, y by gy = 0 and g3 = 0,
respectively, where

g =x + L hesingd (10)
2 pr D

and

° _hx he cos ¢
€3 Y " or D (11)

i
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